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Abstract
We discuss the dynamic behaviour of a finite group of phase oscillators
unidirectionally coupled in a ring. The dynamics are based on the Kuramoto
model. In the case of identical oscillators, all phase locking solutions and
their stability properties are obtained. For nonidentical oscillators it is proven
that there exist phase locking solutions for sufficiently strong coupling. An
algorithm to obtain all phase locking solutions is proposed. These solutions
can be classified into classes, each with its own stability properties. The stability
properties are obtained by means of a novel extension of Gershgorin’s theorem.
One class of stable solutions has the property that all phase differences between
neighbouring cells are contained in

(−π
2 , π

2

)
. Contrary to intuition, a second

class of stable solutions is established with exactly one of the phase differences
contained in

(
π
2 , 3π

2

)
. The stability results are extended from sinusoidal

interconnections to a class of odd functions. To conclude, a connection with
the field of active antenna arrays is made, generalizing some results earlier
obtained in this field.

PACS numbers: 05.45.−a, 05.45.Xt, 87.10.+e

1. Introduction

Oscillating systems coupled into a ring formation serve as a model for a wide array of
applications: gaits of n-legged animals (Golubitsky et al 1998), twining of plants (Lubkin
1994), rings of semiconductor lasers (Silber et al 1993) and circular antenna arrays (Davies
1983, Dussopt and Laheurte 1999).

Several mathematical models have been proposed and studied in the literature. In
Ermentrout (1985) and Laing (1998), each oscillator is modelled as a nonlinear system with
an attracting limit cycle and the coupling is bidirectional and of the nearest-neighbour type.
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In Ermentrout (1985) the existence and necessary conditions for the stability of phase locking
behaviour of the network is established. In Laing (1998) a ring of identical oscillators is
considered and a Hopf bifurcation of the network is investigated to obtain different types
of stable oscillation. In Golubitsky and Stewart (1988) more general networks of identical
oscillators are considered: the symmetries of the network are exploited in order to obtain
different types of phase locking behaviour. In Woodward (1990), initial conditions and
distributions on the natural frequencies of the oscillators are determined that correspond to a
given type of rational frequency ratio.

The model in this paper is based on the model proposed by Kuramoto (1984), although
with a different connection structure. We consider a ring structure of N oscillators with
unidirectional coupling: the ith oscillator is influenced by the (i + 1)th oscillator for
i = 1, . . . , N − 1, and the Nth oscillator is influenced by the first. The oscillators need
not be identical.

Rings of unidirectionally coupled oscillators are typically encountered in the modelling of
animal locomotion (Luo et al 2004, Collins and Stewart 1993). These structures are candidates
for rhythmic pattern-generating networks of mutually coupled neurons in the central nervous
system. They are called central pattern generators (CPG) and control the motion of the limbs
of an n-legged animal. In a simplified model, each neuron in the network corresponds to
one leg of the animal. The present paper obtains the full picture of this type of networks
when modelled by the Kuramoto equations, determining all phase locking solutions and their
stability properties. Moreover these results are extended to a more general coupling, not just
sinusoidal coupling. Note also that we allow for oscillators with distinct natural frequencies
of oscillation. Different configurations of natural frequencies lead to different sets of phase
locking solutions. In this way it is possible to influence the dynamic behaviour of the system
by adjusting the natural frequencies.

The Kuramoto equations are also compatible with models of antenna arrays. Each
antenna is steered by a voltage controlled oscillator (VCO) and these oscillators are mutually
coupled according to some desired topology. When all VCOs oscillate at the same frequency,
their phase differences determine the radiation pattern of the entire array. The present paper
determines the stable solutions for the phase differences, when a configuration of the natural
frequencies of the VCOs is given for the unidirectional ring topology. A second application
in antenna arrays is using the unidirectional ring structure to construct circular polarization of
an antenna array (Dussopt and Laheurte 1999). This is explained in section 7.

In a different context of cyclic pursuit problems, patterns remarkably similar to the phase
locking solutions obtained in the present paper emerge. In the case of N mobile robots moving
in two-dimensional space, where the ith robot follows the (i + 1)th and the Nth follows the
first, it is shown by Marshall et al (2003, 2004) that the robots end up moving in a circle at
the same velocity. There exist several qualitatively different stable formations of this kind,
mutually distinguishable by the relative positions of the robots on the circle.

2. System dynamics

Each oscillator is a dynamical system with a unique, stable, isolated limit cycle when
not coupled with other oscillators, i.e., each oscillator exhibits a periodic behaviour when
uncoupled. This behaviour can be captured by a model where the state of the oscillator is one
scalar variable θ , called the phase of the oscillator (Kuramoto 1984). The phase of the ith
oscillator, when uncoupled, evolves in time according to the differential equation

θ̇ i = ωi, θi ∈ S1, ωi ∈ R,
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where the natural frequency ωi of the ith oscillator is the angular velocity of the periodic
motion. The phase of an oscillator can be visualized as a point moving around on the unit
circle.

The system equations of N (N ∈ N) oscillators unidirectionally coupled in a ring are

θ̇ i = ωi + K sin(θi+1 − θi), i ∈ N, (1)

with N � {1, . . . , N} and θN+1 ≡ θ1. The parameter K > 0 is called the coupling strength.
For the moment, the interaction is implemented by a sine function. See section 6 for an
extension.

3. Existence of phase locking solutions: identical oscillators

All oscillators have the same natural frequency ω. After substitution θi → θi + ωt , the system
equations are

θ̇ i = K sin(θi+1 − θi), i ∈ N. (2)

Define the phase differences φi ∈ S1 : φi � (θi − θi−1) mod 2π, i = 2, . . . , N and φ1 �
(θ1 − θN) mod 2π . A network is called phase locked when the phase difference between each
pair of oscillators is constant in time.

Theorem 1. Consider all couples (α,m), α ∈ S1,m ∈ N , satisfying

mα + (N − m)(π − α) = 2πk, k ∈ T ,

with T � {0, . . . , N − 1}. Assign to each such couple (α,m) the vector

(α, . . . , α︸ ︷︷ ︸
m

, π − α, . . . , π − α︸ ︷︷ ︸
N−m

). (3)

Every vector φ = (φ1, . . . , φN) that is a permutation of such a vector (3), corresponds to a
phase locking solution of (2).

Proof. The phase differences φ1, . . . , φN are solutions of the system equations

φ̇i = K(sin φi+1 − sin φi), i ∈ N, (4)

with φN+1 ≡ φ1. The phase locking solutions of (2) are the equilibrium points of (4), hence
each phase locking solution satisfies the set of equations

(φi − φi+1)(φi − π + φi+1) = 0, ∀i ∈ N. (5)

Every combination of either the first factor or the second factor equal to zero in each of these
equations corresponds to a phase locking solution. Suppose that one of the phase differences
assumes the value α ∈ S1. From (5) it follows that the other phase differences assume the
values α or π − α. Assume m phase differences equal to α are present. In a phase locking
solution the phase differences φi have to add up to an integer multiple of 2π :

N∑
j=1

φj = 2πk, k ∈ T , (6)

with T = {0, . . . , N − 1}. It follows that

mα + (N − m)(π − α) = 2πk, k ∈ T . �

A solution (3) with α = 0 and m �= N is called an elementary solution. The solution
φ = (0, . . . , 0) is called the synchronized solution. The solutions

φ =
(

2πk

N
, . . . ,

2πk

N

)
, k ∈ {1, . . . , N − 1}, (7)

are the so-called travelling wave solutions.
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(a) (b) (c)

Figure 1. Different types of phase locking solutions for a ring of nine identical oscillators:
(a) elementary solution, (b) travelling wave solutions and (c) other type of solution.

Because of (2), constant phase differences for all i imply the constancy of the phase
velocities, θ̇ i = �i . But on the other hand, θi+1 − θi = ai = const implies also θ̇ i = θ̇ i+1, and
therefore θ̇ i = �,∀i ∈ N . The constant � is called the group velocity of the phase locking
solution.

From (2), the group velocity at which a phase locked travelling wave group moves is
� = sin((2πk)/N)K . Stronger coupled oscillators results in a faster motion, in case of a
travelling wave. If the oscillators synchronize, the group velocity � is zero. This behaviour is
completely different from the case in which the oscillators are bidirectionally coupled, where
� is independent of K for all phase locking solutions. Note that in the original coordinates,
i.e., before the substitution θi → θi + ωt at the beginning of this section, the group velocity is
� + ω.

Figure 1 shows different types of possible phase locking solutions in a ring of 9 identical
oscillators. Each figure is a snapshot taken of the population moving along the circle at
the group velocity �. The figure on the left-hand side shows all elementary solutions
(m = 1, . . . , 8). In this figure it is indicated how many oscillators are represented by each dot
on the circle. The middle figure shows two travelling wave solutions. Each dot corresponds to
one oscillator. The arrows represent the interconnections between the oscillators. Figure 1(c)
is an example of a solution not belonging to the previous two classes.

4. Existence of phase locking solutions: nonidentical oscillators

In this section the dynamics described by (1) is investigated. It turns out that in this case there
exist phase locking solutions as well. Assume that θ̇ i = �,∀i ∈ N . The phase differences
have to satisfy

ωi + K sin φi+1 = �, i ∈ N, (8)

or equivalently,

φi+1 = gi

(
� − ωi

K

)
, i ∈ N, (9)

where the function gi can be any of the functions f0 and f1, defined as

f0 : [−1, 1] → (−π/2, π/2) : t �→ arcsin(t),

f1 : [−1, 1] → [π/2, 3π/2] : t �→ π − arcsin(t).
(10)

Since the phase differences φi have to add up to an integer multiple of 2π in a phase locking
solution, it holds that

g1

(
� − ω1

K

)
+ g2

(
� − ω2

K

)
+ · · · + gN

(
� − ωN

K

)
= 2πk, k ∈ Z (11)
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Figure 2. The group velocity �(K) of 2 ring configurations of three oscillators. (The symbols
(a)–(f) in figure (b) refer to figure 5). (a) The group velocity �(K) of all phase locking solutions
of the ring of three identical oscillators with ω = 0. (b) The group velocity �(K) of all phase
locking solutions of the ring of three oscillators with ω1 = 0.1, ω2 = 0.2, ω3 = −0.3.

with every gi, i ∈ N , replaced by f0 or f1, leading to 2N equations for a fixed value of k.
Expression (11) is called the consistency condition on the group velocity. Each phase locking
solution (φ1, . . . , φN) satisfies exactly one of these equations, since the images of f0 and
f1 are disjunct. Hence, each equation separately yields a number of solutions of the group
velocity �. However, how many solutions correspond to each equation is not known. It is
also possible that an equation does not possess any solution at all.

Computing all phase locking solutions is done by investigating the consistency condition.
Let the coupling strength assume some value K1 and let k = 0. Then (11) is a set of 2N

equations with � the remaining unknown. For each equation the corresponding solutions �

are determined separately. The solutions � computed in this way are the group velocities
of those phase locking solutions with phase differences adding up to zero (since k = 0) and
corresponding with a coupling strength K1. Once a value of � is obtained from (11), the
values of the corresponding phase differences can be determined via (9).

This procedure is then repeated for all k ∈ Z, resulting in all solutions of � corresponding
to the coupling strength K1. Performing the above procedure for every K results in a diagram
as shown in figure 2. Note that the set of k values for which the computation has to be done
can be reduced to a subset of Z. Each phase difference φi assumes a value in (−π/2, 3π/2],
according to (10). The left-hand side of (11) then assumes a value in (−πN/2, 3πN/2].
Hence, equations of (11) with k not belonging to {l ∈ Z : (−πN)/2 < 2πl � (3πN)/2} do
not yield phase locking solutions.

In figure 2, �(K) is plotted for two ring configurations. On the left-hand side the group
velocity of a ring with three identical oscillators, with ω = 0, is displayed. The group velocity
is calculated using (11) and the resulting branches are �(K) = 0,�(K) = K sin(π/3) and
�(K) = −K sin(π/3). The six corresponding solutions are displayed in figures 3 and 4. The
phase differences φi of each of these solutions are independent of the coupling strength.
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θ1, θ2

θ3

θ1, θ3

θ2

θ2, θ3

θ1

θ1, θ2, θ3

Figure 3. All phase locking solutions corresponding to the central branch (with group velocity
zero) of figure 2(a).

θ1

θ2

θ3

θ1

θ2

θ3

Figure 4. Left: the phase locking solution corresponding to the branch �(K) = −K sin(π/3) of
figure 2(a). Right: the phase locking solution corresponding to the branch �(K) = K sin(π/3).

In figure 2(b) the case of a ring of three oscillators with ω1 = 0.1, ω2 = 0.2 and
ω3 = −0.3 is shown. The shaded area in this figure is the set of points (K,�) that do not
satisfy K � |� − ωi |,∀i. For these points it holds that

K < K� ⇒ ∃i : |sin φi+1| = |� − ωi |
K

> 1,

hence the shaded area is the area where no phase locking solutions are possible. For small K no
phase locking solutions exist. When the coupling strength exceeds some threshold value KT ,
phase locking solutions arise. For sufficiently large K, six solutions �(K) exist. Computation
of the corresponding phase locking solutions via (9) reveals that there corresponds only one
phase locking solution to each solution �(K). Three of the solutions �(K), corresponding
to branches (a), (d) and (f ), converge in the limit K → ∞ to the solutions of figure 2(a).
The remaining three branches are solutions of the following three equations of (11):

arcsin((� − ω1)/K) − arcsin((� − ω2)/K) − arcsin((� − ω3)/K) = 0,

−arcsin((� − ω1)/K) + arcsin((� − ω2)/K) − arcsin((� − ω3)/K) = 0,

−arcsin((� − ω1)/K) − arcsin((� − ω2)/K) + arcsin((� − ω3)/K) = 0.

(12)

The limit value of these branches for K → ∞ is analytically determined as follows. Assume
that the solution � is bounded. Then for K → ∞, the arcsine function can be approximated
by its argument and (12) changes into

(� − ω1)/K − (� − ω2)/K − (� − ω3)/K = 0,

−(� − ω1)/K + (� − ω2)/K − (� − ω3)/K = 0,

−(� − ω1)/K − (� − ω2)/K + (� − ω3)/K = 0,

resulting in three limit values of �: −ω1 + ω2 + ω3,−ω1 − ω2 + ω3 and ω1 + ω2 − ω3, which
can be observed in figure 2.

For K = 1.5 the six phase locking solutions corresponding to figure 2(b) are depicted in
figure 5. The solutions are ordered by increasing group velocity �.
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(a) (b) (c)

(d ) (e) (f )

θ1

θ1

θ1

θ1

θ1

θ1

θ2

θ2

θ2

θ2

θ2

θ2

θ3

θ3

θ3θ3

θ3

θ3

Figure 5. All phase locking solutions of the ring configuration of figure 2(b) with coupling strength
K = 1.5, ordered by increasing group velocity �.

5. Stability properties

5.1. Preliminary results

Theorem 2 (Gershgorin’s theorem). For a matrix A = (aij ) ∈ R
n×n, define

Ri �
n∑

j=1,j �=i

|aij |.

Each eigenvalue of A is contained in at least one of the discs Di , defined by

Di � {z : |z − aii | � Ri}.

It is important to note that all Gershgorin discs do not necessarily contain at least one
eigenvalue. The following theorem gives some more detailed information regarding the
eigenvalues of A (Meyer 2000).

Theorem 3. If
(∪m

j=1 Dj

)∩(∪n
j=m+1 Dj

) = ∅, then ∪m
j=1Dj contains exactly m eigenvalues of

A, with each eigenvalue being counted according to its algebraic multiplicity. The remaining
eigenvalues are in ∪n

j=m+1Dj .

In order to be able to prove the stability properties of the phase locking solutions, this
theorem has been extended by us as follows.

Theorem 4. If
( ∪m

j=1 Dj

) ∩ ( ∪n
j=m+1 Dj

) = {p}, p ∈ C, then ∪m
j=1Dj contains at least m

eigenvalues of A, with each eigenvalue being counted according to its algebraic multiplicity.
The region defined by ∪n

j=m+1Dj contains at least n − m eigenvalues.

Proof. Define AD = diag (a11, a22, . . . , ann) and let A = AD + B. For t ∈ [0, 1] define
At = AD + tB. Then A0 = AD and A1 = A. Call the eigenvalues of At, λt . Because
of theorem 3, for t ∈ [0, 1),∪m

j=1Dj,t contains m eigenvalues and ∪n
j=m+1Dj,t contains the

remaining eigenvalues.



11142 J A Rogge and D Aeyels

Define the discs D′
i,t with centres aii and radii ri,t as

D′
i,t ∈ {Dj,t } and p ∈ D′

i,1.

Suppose that for t = 1,∪m
j=1Dj,t contains k < m eigenvalues. This implies that

∃j, ∃λt :

{|λt − ajj | � ri,t for t ∈ [0, 1),

|λt − ajj | > ri,t for t = 1,

or equivalently, that there exists a continuous function g(t) � |λt − ajj | − ri,t :{
g(t) � 0 for t ∈ [0, 1),

g(t) > 0 for t = 1.

This is not possible, so the assumption was incorrect. Similarly it can be proven that ∪n
j=m+1Dj

contains at least n − m eigenvalues.
Suppose ∪m

j=1Dj contains k > m eigenvalues. It then follows that at least k − m

eigenvalues are located in p. �

5.2. Linearization

Every phase locking solution of (1) can be transformed into a curve of equilibrium points
by applying the appropriate change of coordinates: if the group velocity of the phase locking
solution under consideration is �, then the new coordinates θ̃ are defined by θ̃ i � θi − �t .

Since only phase differences govern the dynamics, solutions are only unique up to a
uniform phase shift. As a consequence, the linearization around each equilibrium point will
contain at least one zero-eigenvalue. This zero eigenvalue has no influence on the stability
properties.

The linearization about a phase locking solution is the matrix J ∈ R
N×N , with the phase

differences φi assuming values corresponding to that phase locking solution:

J = K




−cos φ1 cos φ1 0 · · · 0
0 −cos φ2 cos φ2 0 0
...

. . .
. . .

. . .
...

0 0 −cos φN−1 cos φN−1

cos φN 0 · · · 0 −cos φN


 . (13)

The characteristic polynomial of the linearization is

N∏
j=1

(λ + cos φj ) −
N∏

j=1

cos φj , (14)

which clearly is invariant under permutations of the phase differences.
Calculation of the Gershgorin discs reveals that each disc lies in a closed half plane and

contains the origin. The centres of these discs are given by the diagonal elements of J .
Phase locking solutions with phase differences equal to π/2 or 3π/2 are not considered

in this and the next section, so that all cosine-elements in the linearization matrix are different
from zero.

5.3. Several theorems on stability

Theorem 5. A phase locking solution defined by phase differences φi belonging to
(−π/2, π/2) is asymptotically stable.
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Proof. If all φj ∈ (−π/2, π/2), i.e., if all diagonal elements of J are smaller than zero, all
Gershgorin discs lie in the closed left half plane, implying that all eigenvalues of J lie in the
closed left half plane as well.

The zero-order term of the characteristic polynomial (14) is zero, implying that at least
one eigenvalue is zero. The coefficient corresponding to the first-order term is

N∑
j=1

N∏
k=1,k �=j

cos φk. (15)

If φj ∈ (−π/2, π/2),∀j ∈ N , this coefficient is strictly positive. Exactly one eigenvalue is
zero and the remaining eigenvalues are located in the open left half plane. Local asymptotic
stability of the corresponding phase locking solution follows. �

Theorem 6. A phase locking solution with two or more phase differences φi inside (π/2, 3π/2)

is unstable if
∑N

j=1

∏N
k=1,k �=j cos φk �= 0.

Proof. If there exist two or more phase differences belonging to (π/2, 3π/2) then two or
more Gershgorin discs lie in the closed right half plane. Because of theorem 4, two or more
eigenvalues are located in the closed right half plane. If

∑N
j=1

∏N
k=1,k �=j cos φk �= 0, then

exactly one eigenvalue is zero, which implies that one or more eigenvalues have a strictly
positive real part. The corresponding phase locking solution is locally unstable. �

Theorem 7. If the ring consists of identical oscillators, a phase locking solution with two or
more phase differences φi inside (π/2, 3π/2) is unstable.

Proof. In the identical oscillator case a phase locking solution is of the form

φ = (α, . . . , α︸ ︷︷ ︸
m

, π − α, . . . , π − α︸ ︷︷ ︸
N−m

),

or a permutation thereof, with

mα + (N − m)(π − α) = 2πk, k ∈ T , m ∈ N. (16)

If m �= N/2, it is easy to derive that
∑N

j=1 1
/

cos φj �= 0. Since(
N∏

i=1

cos φj

) 
 N∑

j=1

1

cos φj


 =

N∑
j=1

N∏
k=1,k �=j

cos φk,

theorem 6 is applicable, yielding instability.
If m = N/2, then

∑N
j=1 1

/
cos φj = 0. The linearization possesses at least two zero-

eigenvalues. Substituting m = N/2 in (16) yields N = 4k, k ∈ T . Since m = N/2, it is
possible to perform a permutation of the phase differences such that the matrix J transforms
into −J . It has been shown in section 5.2 that the eigenvalues of the linearization are invariant
under such a permutation, implying that the set of eigenvalues of J is equal to the set of
eigenvalues of −J . Hence, if λ is an eigenvalue of J , then so is −λ. The matrix J has some
nonzero-eigenvalues, since it is different from the null matrix. Gershgorin’s theorem shows
that these nonzero-eigenvalues are not located on the imaginary axis. From this it can be
concluded that at least one of the eigenvalues of J has a strictly positive real part. This proves
the instability of the corresponding phase locking solution. �

Theorem 8. If
∑N

j=1

∏N
k=1,k �=j cos φk < 0, the phase locking solution with exactly one phase

difference φi belonging to (π/2, 3π/2) is locally unstable. If
∑N

j=1

∏N
k=1,k �=j cos φk > 0, such

a solution is stable.
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Table 1. Summary of the stability theorems.

Stability
Phase locking solution with property

No phase differences ∈ [π/2, 3π/2] Stable

One phase difference ∈ (π/2, 3π/2) and
∑N

j=1
∏N

k=1,k �=j cos φk > 0 Stable

One phase difference ∈ (π/2, 3π/2) and
∑N

j=1
∏N

k=1,k �=j cos φk < 0 Unstable

Two or more phase differences ∈ (π/2, 3π/2) and
∑N

j=1
∏N

k=1,k �=j cos φk �= 0 Unstable
One or more phase differences ∈ (π/2, 3π/2) and identical oscillators Unstable

Proof. If a phase locking solution possesses exactly one phase difference φi belonging to
(π/2, 3π/2), exactly one Gershgorin disc lies in the closed half plane. At most one eigenvalue
is positive. It can be shown that the coefficient (15) belonging to the first-order term of the
characteristic polynomial is equal to

(−1)N−1
N−1∏
i=1

λi,

where λi are the eigenvalues of J from which one zero-eigenvalue is excluded. Now,

Re(λi) < 0, ∀i ∈ N − 1 ⇒ (−1)N−1
N−1∏
i=1

λi > 0,

Re(λi) �= 0 ∀i ∈ N − 1 and ∃!λi : Re (λi) > 0 ⇒ (−1)N−1
N−1∏
i=1

λi < 0.

Hence, the linearization is unstable if

N∑
j=1

N∏
k=1,k �=j

cos φk < 0,

and stable if
N∑

j=1

N∏
k=1,k �=j

cos φk > 0.

�

Theorem 9. If all oscillators are identical then each phase locking solution with one phase
difference φi belonging to (π/2, 3π/2) is locally unstable.

Proof. From theorem 1 it follows that phase locking solutions with the above property are
determined by a permutation of the vector φ = (α, . . . , α, π − α), with α ∈ (−π/2, π/2)

satisfying (3). The coefficient of the first-order term of the characteristic polynomial (15)
then is (2 − N) cosN−1 α. For N > 2 this is strictly negative since cos α > 0. According to
theorem 8 the corresponding phase locking solution is unstable. �

The above stability theorems are summarized in table 1.
Some remarks:

(i) It can be proven that for each configuration of natural frequencies there always exist phase
locking solutions with no phase differences belonging to [π/2, 3π/2].
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Figure 6. The evolution in time of the seven phase differences φi � θi − θi−1, i = 1, . . . 7,
of the ring consisting of seven oscillators with the following properties: the coupling strength is
K = 39.5 and the vector of natural frequencies is (0, 0, 0, 0, 0, 0,−50). (a) No phase differences ∈
(π/2, 3π/2). (b) One phase difference ∈ (π/2, 3π/2).

(ii) Simulations show that for some, but not all, configurations of natural frequencies, there
exist stable phase locking solutions belonging to the class treated in theorem 8. This
is surprising, because it implies a qualitative difference between the identical and the
nonidentical oscillator case. Figure 6 shows a simulation of all stable phase locking
solutions of a unidirectionally coupled ring consisting of seven oscillators. The natural
frequencies of the oscillators are all zero, except ω7 = −50, and the coupling strength is
39.5. The solution on the left-hand side belongs to the class investigated in theorem 5,
whereas the (stable) solution on the right-hand side is considered in theorem 8. To which
of the two solutions the state of the system converges depends on the initial conditions.

(iii) The above stability analysis is applicable in the more general case of non-uniform
coupling:

θ̇ i = ωi + Ki sin(θi+1 − θi), (17)

with Ki � 0. The consistency condition (11) changes into

N∑
j=1

gj

(
� − ωj

Kj

)
= 2πk, (18)

but the stability criteria remain unaltered.
(iv) The approach to the stability analysis by investigation of the linearization prohibits the

study of a number of phase locking solutions. First, if a phase locking solution is such
that its phase differences satisfy

∑N
j=1

∏N
k=1,k �=j cos φk = 0, the linearization possesses

multiple zero-eigenvalues. In most cases the presence of positive eigenvalues cannot be
concluded. Local stability cannot be analysed in this way.

Second, we assumed that the phase locking solutions do not possess phase differences
equal to π/2 or 3π/2. This assumption excludes all phase locking solutions of which
the rank of the linearization is smaller than or equal to N − 2. These solutions have
again multiple eigenvalues. For instance, the linearization of the travelling wave solution
φ = (π/2, π/2, π/2, π/2) of the identical four-oscillator ring is a matrix with exclusively
zero-entries, yielding no information whatsoever about stability. This results from the
specific form of the coupling, namely, sine coupling. Instead of pursuing the stability of
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Figure 7. Generalized coupling function.

Table 2. Stability results for generalized coupling.

Stability
Phase locking solution with property

All phase differences ∈ (−γ, γ ) Stable

One phase difference ∈ (γ, 2π − γ ) and
∑N

j=1
∏N

k=1,k �=j H ′(φk) > 0, Stable

One phase difference ∈ (γ, 2π − γ ) and
∑N

j=1
∏N

k=1,k �=j H ′(φk) < 0, Unstable

Two or more phase differences ∈ (γ, 2π − γ ) and
∑N

j=1
∏N

k=1,k �=j H ′(φk) �= 0 Unstable

those remaining solutions, we generalize the coupling function in the next section; as a
bonus we are able to deal with solutions of the type φ = (π/2, π/2, π/2, π/2).

6. Generalized coupling

For the unidirectionally coupled ring it is possible to generalize the study from sine coupling to
a broader class of coupling functions. The properties of the coupling functions H we consider
are the following. The function H is continuous, 2π -periodic and odd, and has exactly one
maximum belonging to (0, π). An example is shown in figure 7. Phase locking solutions
are obtained in a similar way as described in section 3. Consider a network with identical
oscillators:

θ̇ i = KH(θi+1 − θi), i ∈ N. (19)

Theorem 10. Consider all triples (α, β,m),m ∈ N,α, β ∈ S1, (α �= β), satisfying

mα + (N − m)β = 2πk, k ∈ T ,

H(α) = H(β).

Assign to each such triple (α, β,m) the vector

(α, . . . , α︸ ︷︷ ︸
m

, β, . . . , β︸ ︷︷ ︸
N−m

).

Every vector φ = (φ1, . . . , φN) that is a permutation of such a vector (corresponds to a phase
locking solution of (19).

For m = N the travelling wave solutions are retrieved, identical to the travelling wave solutions
of (2). The stability properties, however, may differ from the case with sine coupling, as follows
from the theorems below. With K > 0 and γ ∈ (0, π) : H ′(γ ) = 0, the results in table 2 can
be proven.
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7. Application to antenna arrays

The system equations proposed in Kuramoto (1984) are closely related to those arising
in antenna array theory (York 1993, Liao and York 1993, Navarro and Chang 1996,
Pogorzelski et al 1999, Dussopt and Laheurte 1999). In an antenna array, each antenna i is
driven by a Van der Pol oscillator, described by its complex output voltage Vi(t) = Ai(t) eiθi (t).
Under the assumption of weak coupling, the amplitude of each oscillator Ai is considered to
be constant and the dynamics of the phases θi becomes (York 1993):

θ̇ i = ωi − ωi

2Q

N∑
j=1

εij

αj

αi

sin(�ij + θi − θj ), ∀i ∈ N,

with Q the quality factor of the coupled network, αi the (constant) free-running amplitude of
the ith oscillator, ωi the free-running frequency of the ith oscillator and εij e�ij the complex
coupling between oscillators i and j . The coupling amplitude εii is assumed zero, without
loss of generality. Assume that each antenna is coupled with the others in an identical way,
then

εij e�ij = ε e�, ∀i, j ∈ N.

A simplification often made (York 1993, Pogorzelski et al 1999) is replacing the factor
(ωiε)/(2Q) in each equation by a common factor �ω, called the locking range of the oscillator.
This simplification is only valid if the frequency differences are sufficiently small.

The system equations can be further simplified by assuming identical free-running
amplitudes αi of the oscillators (Liao and York 1993). This yields a dynamics

θ̇ i = ωi − �ω

N∑
j=1

sin(� + θi − θj ), ∀i ∈ N.

When coupled in a unidirectional ring these equations become

θ̇ i = ωi + �ω sin(� + θi+1 − θi), i ∈ N.

All phase locking solutions can be obtained using the same technique as in section 4. The
stability theorems proven in section 5.2 can be modified.

Theorem 11. If a phase locking solution has only phase differences φi belonging to
(−π/2 + �,π/2 + �), then it is asymptotically stable.

In Dussopt and Laheurte (1999) an antenna array of four identical unidirectionally
coupled oscillators is investigated. The coupling is made unidirectional by inserting unilateral
amplifiers between the oscillators, as explained in Lin et al (1994). Each antenna is
linearly polarized. The array is constructed in such a way that if the phase locking solution
φ = (π/2, π/2, π/2, π/2) can be maintained, the antenna array emits a circularly polarized
wave. Using Maple all stable phase locking solutions were determined, together with a
stability condition on the coupling phase �.

In the present paper all phase locking solutions and their stability properties are determined
analytically. The stability condition on φ for the travelling wave to be stable is analytically
proven. The present paper also shows that the setting of Dussopt and Laheurte (1999) can be
generalized to nonidentical oscillators. If the oscillators are not identical and if the coupling
is sufficiently strong there exist phase locking solutions which are locally stable. Because of
(9), mutually different frequencies ωi yield mutually different phase differences φi . Hence
the travelling wave solutions (7) do not belong to the set of solutions and the polarization of
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the wave created by the oscillator will not be perfectly circular. However simulations show
that for K sufficiently large, there exist phase locking solutions with values of φi very close to
those of the travelling wave. Once the values of φi are known, theorem 11 yields a condition
on � for the phase locking solution to be stable.
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